
Boxy Orbital Structures in Rotating Bar Models

L. Chaves-Velasquez1, P. A. Patsis2, I. Puerari1, Ch. Skokos3, and T. Manos4,5,6
1 Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro 1, 72840 Santa María Tonantzintla, Puebla, Mexico; leonardochaves83@gmail.com

2 Research Center for Astronomy, Academy of Athens, Soranou Efessiou 4, GR-115 27 Athens, Greece
3 Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, 7701, South Africa

4 CAMTP—Center for Applied Mathematics and Theoretical Physics, University of Maribor, Krekova 2, SI-2000 Maribor, Slovenia
5 School of Applied Sciences, University of Nova Gorica, Vipavska 11c, SI-5270 Ajdovščina, Slovenia

6 Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
Received 2017 June 6; revised 2017 October 6; accepted 2017 October 20; published 2017 November 28

Abstract

We investigate regular and chaotic two-dimensional (2D) and three-dimensional (3D) orbits of stars in models of a
galactic potential consisting of a disk, a halo, and a bar to find the origin of boxy components that are part of the
bar or (almost) the bar itself. Our models originate in snapshots of an N-body simulation, which develops a strong
bar. We consider three snapshots of the simulation, and, for the orbital study, we treat each snapshot independently,
as an autonomous Hamiltonian system. The calculated corotation–to–bar length ratios indicate that in all three
cases, the bar rotates slowly, while the orientation of the orbits of the main family of periodic orbits changes along
its characteristic. We characterize the orbits as regular, sticky, or chaotic after integrating them for a 10 Gyr period
by using the GALI2 index. Boxiness in the equatorial plane is associated either with quasi-periodic orbits in the
outer parts of stability islands or with sticky orbits around them, which can be found in a large range of energies.
We indicate the location of such orbits in diagrams, which include the characteristic of the main family. They are
always found about the transition region from order to chaos. By perturbing such orbits in the vertical direction, we
find a class of 3D nonperiodic orbits, which have boxy projections both in their face-on and side-on views.
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1. Introduction

Strong bars are observed in optical images of almost half of all
nearby disk galaxies (see, e.g., Marinova & Jogee 2007; Reese
et al. 2007; Barazza et al. 2008).This percentage increases to
nearly 70% when near-infrared images are considered (Eskridge
et al. 2000; Knapen et al. 2000; Menéndez-Delmestre et al.
2007). Bars are characterized by three parameters: length,
strength, and pattern speed. This last parameter is defined as the
rotational frequency of the bar and determines to a large extent
the dynamics of a barred galaxy. Bars are classified as fast or
slow by means of the ratio R R abCR= , where RCR is the
corotation radius and ab is the length of the semimajor axis of the
bar. The orbital theory shows that bars cannot extend beyond
corotation (Contopoulos 1980). In the case of fast rotators, we
have R1.0 1.4< < , while for slow rotators, R 1.4>
(Athanassoula 1992b; Debattista & Sellwood 2000). By
definition, in a slow rotator, corotation is located far from the
end of the bar.

Structures in barred galaxies have to be supported by stellar
orbits (Contopoulos 2002; Binney & Tremaine 2008). It is now
known that not only regular but also chaotic sticky orbits can be
used for building the bars (Wozniak 1994; Kaufmann &
Contopoulos 1996; Patsis et al. 1997; Wozniak & Pfenniger 1999;
Muzzio et al. 2005; Harsoula & Kalapotharakos 2009; Harsoula
et al. 2010; Patsis et al. 2010; Contopoulos & Harsoula 2013;
Patsis & Katsanikas 2014b; Tsigaridi & Patsis 2015). Sticky orbits
are chaotic orbits that wander for relatively long times close to the
outer borders of stability islands before eventually entering a well-
defined chaotic region in the system’s phase space. In some other
cases, there is also stickiness near unstable asymptotic curves in
the chaotic sea, which is called “stickiness in chaos” (Contopoulos
& Harsoula 2008). In both cases, sticky orbits mimic the behavior
of quasi-periodic orbits in the configuration space during the time

they remain confined in a region of phase space. However,
ultimately, during their time evolution, they will exhibit a change
in their orbital morphology, as they will at a certain time change
their behavior from quasi-regular to completely chaotic.
Special features and deviations from the standard orbital

dynamics (Contopoulos & Grosbol 1989) have been encoun-
tered in several cases. For example, in Tsigaridi & Patsis
(2015), the orbital stellar dynamics of a two-dimensional (2D),
slowly rotating, barred-spiral model has been investigated. In
this case, orbital families have been presented that support
in the galactic plane an inner ring and an X feature embedded
in the bar. However, the dynamics associated with this model is
different from that of a typical bar ending close to corotation.
The ring was a result of a folding of the characteristic (“S”
shape), along which the orientation of the elliptical orbits of the
main family and their stability vary (bistable bifurcation).
Furthermore, the observed boxiness and the X feature reflected
the presence of sticky orbits at energy levels corresponding to
the middle of the barred-spiral potential. Folding of the
characteristic curve of the main planar family was found
earlier in the work of Skokos et al. (2002b) in the case of a
three-dimensional (3D) bar again rotating slowly. Questions
that arise are how common is this feature in the backbone
families of real bars, and what are the implications for the
observed morphologies?
The aim of this work is to study the underlying dynamics in

three analytic models that have a common origin, being derived
from snapshots of an N-body simulation reported in Machado
& Athanassoula (2010). We want to examine the degree of
chaoticity of the bar-supporting orbits. In that simulation, the
interaction between the dark matter halo and the disk develops
a bar, which evolves in time. We consider for our study three
snapshots at times 4.2, 7, and 11.2Gyr. Each snapshot is
modeled by a frozen potential, so we treat each one of them as
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a time-independent model; i.e., we use in our work the
formalism for autonomous Hamiltonian systems. The bar is
modeled with a Ferrers potential (Ferrers 1877), the disk is a
Miyamoto–Nagai disk (Miyamoto & Nagai 1975), and the dark
matter halo is a Dehnen potential (Dehnen 1993). The models
for these snapshots have been taken from Manos & Machado
(2014, hereafter MM). Throughout the text, by referring to a
“snapshot,” we will refer to the corresponding model in MM.

In particular, we want to examine the relation between the
morphological features of the bars and the degree of chaos of
the orbits that support these features. Such features include a
possible inner and/or outer boxiness of the bar and the
formation of rings. In the 3D barred models in Patsis &
Katsanikas (2014a, 2014b), it has been suggested that inner
boxy features can be built by means of quasi-periodic orbits at
the edges of the stability islands of the x1 family, as well as
with sticky orbits just beyond the last invariant torus around the
stable x1 periodic orbit. It has also been proposed that such
orbits support boxiness both in face-on and edge-on projections
at the central region of the bar (about halfway to the end of the
bar). A similar dynamical phenomenon led to the boxy features
on the galactic plane in the bars of 2D barred-spiral models in
Tsigaridi & Patsis (2015).

In the present study, we want to investigate what kind of
orbits support double boxy morphologies in the successive
snapshots, and how they evolve in time, i.e., from the model of
the earlier snapshot to the model for the final one. We want to
examine whether this dynamical mechanism is associated with
orbits just beyond the vertical 2:1 resonance region or can be
applied in a large energy range in which we can find bar-
supporting orbits. For this purpose, we do not investigate in
detail the structure of phase space in a large number of
energies, but we investigate the systems’ global dynamics
using chaos indicators.

Many techniques have been developed over the years for
determining the regular or chaotic nature of the orbits of
dynamical systems. Review presentations of some of the
most commonly used methods can be found in Skokos et al.
(2016). Among these chaos indicators, the Smaller Align-
ment Index (SALI) method (Skokos 2001; Skokos et al.
2003, 2004) and its extension, the Generalized Alignment
Index (GALI) technique (Skokos et al. 2007, 2008; Manos
et al. 2012), proved to be quite efficient in revealing the
chaotic nature of orbits of Hamiltonian systems in a fast and
accurate way. The computation of these indices is based on
the time evolution of more than one deviation vector from the
studied orbits. The SALI/GALI methods have already been
successfully applied to dynamical studies of astronomical

problems (see, e.g., Sándor et al. 2004; Capuzzo-Dolcetta
et al. 2007; Soulis et al. 2007; Voglis et al. 2007; Manos
et al. 2008; Voyatzis 2008; Bountis & Papadakis 2009; Harsoula
& Kalapotharakos 2009; Manos & Athanassoula 2011; Manos
et al. 2013; Carpintero et al. 2014; Machado & Manos 2016).
The reader is referred to Skokos & Manos (2016) for a recent
review of the theory and applications of the SALI/GALI chaos
indicators.
In order to study the degree of chaoticity of the orbits of our

models, we use the GALI2 index, whose time evolution reveals
quite efficiently the regular, sticky, or chaotic nature of the
studied orbit. It can also tell the time interval within which a
sticky orbit behaves as a regular one, being able this way to
support a given morphological structure. For these reasons, the
use of GALI2 is an essential tool for the needs of our
investigation. We also note here that the GALI2 index is closely
related to the SALI method (see, for example, Appendix B of
Skokos et al. 2007).
The paper is organized as follows. In Section 2, we explain

the gravitational potentials that model the components of the
N-body snapshots. In Section 3, we present the numerical
methods used in our study. In particular, we introduce the
Hamiltonian of the system. The GALI2 index is introduced as
well. In Section 4, we present the results of our study. We
describe the characteristic curves of the main planar family of
periodic orbits in the models we study, and we label the initial
conditions of the integrated nonperiodic orbits according to the
degree of their chaoticity. Finally, in Section 5, we summarize
our findings and present and discuss our conclusions.

2. Modeling the N-body Snapshots

In our study, we closely follow the approach of the work
of MM. The models used for approximating the morphologies
encountered in the studied snapshots of the N-body simulation
consist of a bar embedded in an axisymmetric disk and halo
environment. The bar is represented by a Ferrers model
(Ferrers 1877), the disk is a typical Miyamoto–Nagai model
(Miyamoto & Nagai 1975), and the spherical dark matter halo
surrounding the disk is represented by a Dehnen potential
(Dehnen 1993). The mathematical formulae for these potentials
can be found in MM.
The structural and dynamical parameters of the bar, disk, and

halo of the models are adopted from the models in MM and
summarized in Table 1. In this table, we include an earlier
snapshot presented in MM at t=1.4 Gyr, which, however, has
not yet developed a strong bar. We keep it in the table, but we
will not present any orbital analysis for its small bar. Thus, the

Table 1
The Parameters of the Models Fitting the Snapshots of the N-body Simulation of MM

Bar Disk Halo

s/s Time a b c bW MB A B MD aH γ MH

(Gyr) (kpc) (kpc) (kpc) (km s−1 kpc−1) ( M1010
) (kpc) (kpc) ( M1010

) (kpc) ( M1010
)

1 1.4 2.24 0.71 0.44 52 1.04 1.92 0.22 3.96 3.90 0.23 25
2 4.2 5.40 1.76 1.13 24 2.36 0.95 0.53 2.64 5.21 0.71 25
3 7.0 7.15 2.38 1.58 14 3.02 0.78 0.56 1.98 5.77 0.85 25
4 11.2 7.98 2.76 1.93 9 3.30 0.71 0.59 1.70 5.95 0.89 25

Notes. Successively, we give the number of the snapshot (s/s), the time of the snapshot, the semi-axes of the Ferrers bar a b c, ,( ), the pattern speed of the bar bW , the
mass of the bar MB, the scale lengths of the Miyamoto disk A and B, the disk mass MD, the scale radius of the halo aH, the dimensionless parameter γ in the Dehnen
halo potential, and the mass of the halo MH (units as in MM).
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models in Table 1 correspond to four snapshots taken at times
t 1.4 Gyr= , t 4.2 Gyr= , t 7.0 Gyr= , and t 11.2 Gyr= . We
name them snapshot 1, 2, 3, and 4, respectively.

The scaling of the units we used in our calculations, which
also corresponds to the numbers that appear in the axes of the
figures in this work, are: 1kpc (length), M2 1011´  (mass),
and 1 kpc2 Myr−2 (energy), while G=1.

Having the parameters of each model available, we consider
the length of the bar to be the length of the semimajor axis of
the Ferrers bar, a. Also, from the pattern speed of each model,

bW , we compute the location of the Lagrangian points L1 and
L2. We consider the corotation radius to be their distance from
the center of the system. Then, we calculate the ratio
R R a R ab LCR 1= = . For the three models we analyzed, the
values we found are given in Table 2.

We note that the RL4 values are very close to the RL1 ones,
being 10.75, 16.37, and 22.89, respectively. We realize that in
all cases, R 1.4> , which places all models in the class of slow
rotators.

3. Autonomous Hamiltonian System and the GALI2 Index

The Hamiltonian of the system is given by

H p p p

x y z xp yp E

1

2
, , , 1

x y z

b y x J

2 2 2= + +

+ F - W - =

( )

( ) ( ) ( )

where x y z, , are Cartesian coordinates, p p p, ,x y z are the
conjugate momenta in the inertial reference frame, and bW is
the pattern speed of the bar. In addition, EJ is the energy of Jacobi
and B D HF = F + F + F , where BF is the potential of the bar,

DF is the potential of the disk, and HF is the potential of the halo.
The equations of motion and the variational equations we

use in order to follow the evolution of the two deviation vectors
from the studied orbit can be found in the MM paper. They are
needed for computing the GALI2 index. The GALI2 index is
given by the absolute value of the wedge product of two
normalized-to-unity deviation vectors w t1ˆ ( ) and w t2ˆ ( ):

w wt t tGALI 22 1 2= ( ) ∣ ˆ ( ) ˆ ( )∣ ( )

(see MM for details).
Thus, in order to evaluate GALI2, we integrate the equations

of motion and the variational equations for two deviation
vectors simultaneously. The GALI2 index behaves as follows
(see Skokos & Manos 2016 and references therein):

1. For chaotic orbits, it falls exponentially to zero as

t tGALI exp , 32 1 2l lµ - -( ) ( ( ) ) ( )

where 1l and 2l are the two largest Lyapunov exponents
(for the computation of the Lyapunov exponents, see
Benettin et al. 1980; Skokos 2010).

2. For regular orbits, it oscillates around a positive value
across the integration:

tGALI constant. 42 µ( ) ( )

3. In the case of sticky orbits, we observe a transition from
practically constant GALI2 values, which correspond to
the seemingly quasi-periodic epoch of the orbit, to an
exponential decay to zero, which indicates the orbit’s
transition to chaoticity.

4. The Degree of Chaoticity of the Orbits

4.1. Planar Orbits

In a rotating Ferrers bar, the elliptical periodic orbits of the
main families are characterized by a single nonzero initial
condition along the minor axis of the bar, namely their
position along the y-axis in our models. The curve of zero
velocity (ZVC) in a E y,J 0( ) diagram separates the region
where orbital motion is allowed from the region where it is
not. Since the main family consists of direct periodic orbits,
only the y 00 > part of such a diagram is of interest for us. An
E y,J 0( ) diagram is the projection of a complete E y p, ,J y0 0

( )
figure with all possible initial conditions. However, it is
sufficient for describing the properties of the orbits we present
below. The line that gives the y0 initial condition of the main
family of periodic orbits is the characteristic curve of the
model. Since we want to study chaoticity in a large range of
energies, we have created such E y,J 0( ) diagrams for the
potentials of the three snapshots we study. In order to
calculate the degree of chaoticity of the planar orbits around
the main family of periodic orbit as we move from the center
of the system toward corotation, we use the GALI2 index. We
have used the GALI2 index to color-code each point in the
allowed region in the E y,J 0( ) areas. The shade of the color7

indicates the GALI2 index that a given orbit, i.e., a point in the
E y,J 0( ) diagram, has at the end of the integration. In other
words, the color of an E y,J 0( ) point indicates if the orbit with
y0 initial condition at EJ will lead to regular (large
log GALI10 2( ) values) or chaotic (very small log GALI10 2( )
values) motion. At the borders between these regions, we find
points with intermediate log GALI10 2( ) values, which corre-
spond to sticky chaotic orbits.

4.1.1. Snapshot 2, t=4.2 Gyr

For each model, we sample the GALI2 index at two time
windows: after time t1, corresponding to 1Gyr, and after time
t2, corresponding to 10Gyr. In this way, we investigate both
the relatively short-term and the long-term behavior of the
orbits. The two color-coded E y,J 0( ) diagrams for snapshot 2 are
given in Figure 1. Figure 1(a) gives the index after t 11 = Gyr,
and Figure 1(b) gives it after t 102 = Gyr.
Darker shades indicate more chaotic orbits. The color for

each orbit is determined according to its log10(GALI2) value
and is taken from the color bars given on the right-hand side of
the panels.
In Figure 1 and all similar subsequent figures, the curve of

zero velocity is indicated with “ZVC.” As determined by
Equation (1), motion is allowed only to the right of the ZVC, as

Table 2
Parameters Associated with the Pattern Speed of the Studied Models

snapshot 2 t=4.25 Gyr R 10.83L1 = R=2.0

snapshot 3 t=7.00 Gyr R 16.46L1 = R=2.3

snapshot 4 t=11.2 Gyr R 22.88L1 = R=2.87

Note. Each row successively gives the name of the snapshot, the time after the
beginning of the simulation that it is taken, the radius of the Lagrangian point
L1, and the corotation–to–bar length ratio.

7 In the electronic version of the paper, we use shades of blue to color-code
the orbits. However, in the printed version, the corresponding figures are given
in shades of gray.
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drawn in Figure 1. The local EJ maximum of the ZVC to the
right of the figure gives the location of the Lagrangian point L4.
The solid black curve in the region where motion is allowed is
the characteristic of the main family of periodic orbits. We
observe that it does not grow monotonically from the center
toward corotation, but after reaching point A at E 0.139J » - , it
turns backward toward lower energies. After reaching a local
maximum in point B, it again changes direction at
E 0.175J » - , building a conspicuous open loop in the energy
range E0.175 0.152J- -⪅ ⪅ . The loop becomes evident by
following points B, C, D, and E. The turning back of the
characteristic of the main family resembles the one encountered
in the 2D model in Tsigaridi & Patsis (2015), as well as the one
of model A2 in Skokos et al. (2002b). The joining of x1-, x2-,

and x3-like morphologies in a single continuous characteristic
was called by Contopoulos & Grosbol (1989) a “type 4 gap.”
Following the morphological evolution of the periodic orbits

along this characteristic, we realize that along its lower branch,
for E 0.139J -⪅ , as well as between A and B, i.e., from
E 0.139J » - to E 0.155J » - , they are elliptical, extending
along the bar. However, only the orbits with E 0.139J » -
match the size of the bar of the model. Between A and B, we
find ellipses larger than the bar, as indicated in Figure 1 of MM.
This means that such orbits are not populated in the model.
Then, along the open loop, the ellipticity of the orbits
decreases. They become circular and then again elliptical, but
this time extending along the minor axis of the bar; i.e., they are
x2-like. For E 0.152J -⪆ , the periodic orbits of the main

Figure 1. The chaoticity of the planar orbits on the equatorial plane of snapshot 2 is given in color-coded E y,J 0( ) diagrams. The color of each orbit (each point in the
figure) corresponds to the value of the log10(GALI2) quantity calculated for it and is taken from the color bars on the right-hand side of the figure. In panel (a), we
calculate log10(GALI2) for t 11 = Gyr, while in panel (b), we calculate it for t 102 = Gyr. In both panels, the zero-velocity curve is indicated with “ZVC.” The solid
black line in the region where motion is allowed is the characteristic of the main family. Capital letters (A, B, . . . F) and arrows pointing to points C and D are used for
facilitating the description of the evolution of the curve in the text. We observe that, in general, the orbits with the smaller GALI2 index in panel (a), which reach
values log GALI 510 2 -( ) ⪅ , become strongly chaotic in panel (b). However, panel (b) also shows additional features indicating chaotic behavior that are absent in
panel (a). Such features are the dark blue tails above the characteristic for E0.27 0.17J- -⪅ ⪅ . The six solid dots at E 0.2J = - indicate the initial conditions of the
orbits we use to demonstrate the relation between GALI2 and their morphology in Figure 3. Arrows point to the first and sixth of them. The five solid, light gray
(yellow in the online version) dots at E 0.206, 0.195, 0.18798, 0.17J = - - - - , and −0.162 indicate the initial conditions of the boxy orbits we present in Figure 4.
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family are almost circular. We do not include in Figure 1 the
characteristics of n: 1—resonance families with n 4 beyond
the gap at the radial 4:1 resonance. In this paper, we are
interested in orbits supporting boxiness, and the bar-supporting
orbits close to corotation are practically planar (Skokos
et al. 2002b) with circular projections on the equatorial plane.

In Figure 1(a), color characterizes the chaoticity of the orbits
after integrating them for t 1 Gyr1 = . Within this time, it is
expected that not only regular but also weakly chaotic, sticky
orbits will retain a regular character. Such orbits will be able to
support a given structure during this time period. Keeping the
same scale in the colored bars on the right-hand side of the
figures, we can compare the evolution of the chaotic character
of the orbits from Figures 1(a) to (b). The same shade indicates
the same degree of chaoticity in the two figures.

Figure 1(b) gives the same information, with the only
difference being that the time of integration is t 10 Gyr2 = .
There is an overall similarity between the two figures. The
orbits with the smaller GALI2 values in Figure 1(a) (light
blue areas) developed a clear chaotic character within t2 (dark
blue areas in Figure 1(b)). We also observe that there is a white
stripe surrounding the characteristic of the main family for
almost all energies in both figures. This indicates that the
periodic orbits of the main family are stable, and thus small
perturbations of their initial conditions lead to regular motion
characterized by large log10(GALI2). A notable exception is the
region between the CD part of the characteristic and the ZVC
in Figure 1(b). A very thin dark layer also exists just below this
part of the characteristic. We recall that along the same
characteristic curve of the main family of our models, we
encounter morphologies of periodic orbits that correspond to
the stable families x1 and x2 but also to the unstable x3 family.
In other models, these three families have disconnected
characteristics (see, e.g., Contopoulos & Grosbol 1989;
Athanassoula 1992a; Patsis & Katsanikas 2014a). We also
observe that in Figure 1(b), there are clearly developed dark
blue tails with chaotic orbits, absent in Figure 1(a), in the
region above the characteristic of the main family for

E0.27 0.17J- -⪅ ⪅ . Another conspicuous white zone
extends almost perpendicular to the Ej axis at about
E 0.18J » - . It shrinks when we integrate the orbits for
t 10 Gyr2 = (Figure 1(b)).

We now consider orbits along a line of constant EJ in
Figure 1(b) at which regular and chaotic regions alternate in order
to investigate the morphology-GALI2 relation. Such an energy is,
for example, E 0.2J = - . We observe that along the E 0.2J = -
axis, we encounter both regular and chaotic regions, depicted as a
succession of blue (chaotic) and white (regular) regions. We
present the behavior of six planar orbits at this energy with initial
conditions y 0.800 = , 1.07, 1.24, 1.43, 1.60, and 1.80. In all
cases, p 0y0

= (we recall that the major axis of the bar is along
the x-axis of our system). We name these orbits 1, 2, . . . 6 and
denote their location in Figure 1(b) with solid dots. We use black
or white dots depending on the background in order to make them
as discernible as possible. Arrows point to the location of the first
(1) and sixth (6) of these orbits. Moving along a line of constant
energy, we obtain some of the information a Poincaré surface of
section provides. GALI2 reveals the succession of regular and
chaotic motion along the p 0y0

= axis in the Poincaré section at
this energy. The width of the white space on both sides of the
characteristic of the main family at a given energy is associated
with the size of the stability island around the stable periodic
orbit. The crossing of white stripes by an axis of constant EJ
corresponds to other, smaller islands of stability that exist on the
surface of section p 0y0

= .
In Figure 2, we present the Poincaré surface of section for

E 0.2J = - . The six asterisks along the p 0y0
= axis with

y0.8 1.8  are, from left to right, the initial conditions of
orbits 1 to 6 indicated in Figure 1(b). The evolution of the
morphologies and the quantity log10(GALI2) for these orbits
within t 1 Gyr1 = and t 10 Gyr2 = is given in Figure 3.
Orbit 1, with y0=0.8 (the lowest initial condition indicated

with “1” in Figure 1(b)), corresponds to the left asterisk in
Figure 2. From its location in the surface of section, we can see
that it belongs to an invariant curve on the stability island

Figure 2. Poincaré surface of the section of model 2 for E 0.2J = - . The stable periodic orbit at y p, 0.5, 0y »( ) ( ) belongs to the main family of planar periodic orbits
of the system. The six asterisks indicate the initial conditions of the orbits labeled 1 to 6 in Figure 1(b).
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Figure 3. Six orbits with initial conditions indicated in Figure 1(b) (1 to 6) and Figure 2 (asterisks). Each row refers to the orbit mentioned on its right-hand side. The
columns show (a) the morphology of the orbit within t 1 Gyr1 = , (b) the morphology of the orbit within t 10 Gyr2 = , and (c) the evolution of log10(GALI2) within
t 10 Gyr2 = . The vertical line indicates the location of the first Gyr.
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around the stable representative of the main family of periodic
orbits and close to it. At this energy, the stable periodic orbit is
a typical x1 ellipse. The quasi-periodic orbit we study has a
morphology that can be vaguely described as a “thick” ellipse
(panels (a) and (b) in the first row in Figure 3). Since it is a
regular orbit, log10(GALI2) fluctuates close to 0 (panel (c) in
the first row), as expected.

Orbit 2 has y0=1.07 and also belongs to an invariant
curve. The invariant curve around orbit 2 is very close to the
last Kolmogorov–Arnold–Moser (KAM) curve (see, e.g.,
Contopoulos 2002) of the main stability island of Figure 2. As
we observe in panel (c) of the second row of Figure 3, in this
case, log10(GALI2) fluctuates close to 0. The morphology of
the orbit is boxy (panels (a) and (b) for orbit 2). However, we
observe that even after an integration time that corresponds to
10Gyr, there is a central region that is not visited by the orbit.

The next orbit, 3 (with y0=1.24), gives the gray (light blue
in the online version), heavy consequents in Figure 2. For most
of the integration time, these consequents are trapped around
three stability islands located just beyond the invariant curve of
orbit 2. However, close to the end of the integration time, orbit
3 starts diffusing in the larger chaotic sea surrounding the
region with the stability islands. Thus, it is a typical sticky
orbit. The quantity log10(GALI2) is very close to 0 during the
first Gyr, reaching −1 close to the end of this time period (cf.
the location of the vertical line in panel (c) in the third row of
Figure 3). Beyond that time and up to 10Gyr, it clearly
decreases, revealing the chaotic character of the orbit (panel (c)
in the third row). The morphology of the orbit is boxy for both
1 and 10Gyr (panels (a) and (b) in the third row). Diffusion in
configuration space is observed only during the time the
consequents start visiting all the available space in the surface
of the section. However, in Figure 2, we see that the light
blue dots remain confined in a specific region. In panel (a),
we observe that we have the formation of an X feature inside
the box. The feature also exists in panel (b) of the third row.
We find that an orbit sticky to the stability island of an x1
periodic orbit has a boxy morphology with an X embedded in
it. Thus, we have in this case the formation of a boxy orbit
supporting an X feature on the galactic plane by means of the
dynamical mechanism described by Tsigaridi & Patsis (2015).

The orbit with y0=1.43 (fourth asterisk from left in
Figure 2) starts in the chaotic sea. Its consequents are shown
with solid black dots in the surface of section. We observe that
they are distributed in a larger region than the consequents of
orbit 3, while they almost do not visit the region occupied by
the light blue/gray consequents. For 1Gyr, it also supports a
boxy bar with an X feature as orbit 3 (panel (a) in the fourth
row of Figure 3) and a rather regular behavior with
log10(GALI2) close to 0 (panel (c), before the vertical line for
“4”). However, for a larger time, log10(GALI2) decreases
abruptly, reaching smaller values than in the case of orbit 3 (cf.
panel (c) in the third and fourth rows) and, contrary to orbit 3,
has a chaotic morphology (panel (b) in “4”). We also observe
that for orbit 3, after 10Gyr, log10(GALI 122 » - ), while this
happens already at t » 5000 for orbit 4.

Moving along the py=0 axis toward larger y in Figure 2,
we enter a zone occupied by barely discernible stability islands.
Without going into details for the periodic orbits we find there,
we just mention that in the region there is a periodic orbit of
multiplicity 6. This region corresponds to the white stripe

below the arrow labeled “6” in Figure 1(b). Orbit 5 (y0=1.6)
is almost on the invariant curves of the 6-ple orbit. The
log10(GALI2) index points to a regular orbit (panel (c) in
the fifth row of Figure 3), which is in agreement with the
morphologies after 1 and 10Gyr, as we can observe in panels
(a) and (b) in “5,” respectively. Actually, this is also a sticky
orbit whose chaotic nature will be revealed for t 10 Gyr> , as
toward the end of the integration, we can observe a gradual
decrease of the log10 (GALI2) quantity.
Finally, starting with y0=1.8 (orbit 6), we find a chaotic

orbit (scattered small dots in Figure 2). The morphologies in
panels (a) and (b) in the sixth row of Figure 3 and the
corresponding log10(GALI2) index (panel (c)) are in agreement
with the chaotic nature of the orbit.
As we observe in column (a) of Figure 3, within t 1 Gyr1 = ,

orbits 1 to 5 evidently support some structure. Only orbit 6 has
a well-developed chaotic character. For larger time,
t 10 Gyr2 = , besides orbit 6, orbit 4 also has a chaotic
morphology (panel (b) in the fourth and sixth rowsin
Figure 3). The boxy orbital structures that we are looking for
are not encountered in all structure-supporting orbits. The
regular orbits 1 and, essentially, 5 belong to invariant curves
close to the initial conditions of the periodic orbits, and their
morphology reflects to a large extent the morphology of the
periodic orbits. Clear boxiness appears in orbits 2 and 3. They
are located in the outermost parts of the stability island of the
main periodic orbit (orbit 2) and in the sticky region around it
(orbit 3), respectively, as we can observe in Figure 2. Their
regular and sticky behavior is also reflected in their
log10(GALI2) index within t 10 Gyr2 = (panel (c) of the
second and third rowsin Figure 3). The chaotic orbit 4 has a
morphology similar to orbit 3 only during the first Gyr of
integration. This result is in agreement with the result of
Tsigaridi & Patsis (2015), namely that boxiness in face-on views
of bars at a given energy is introduced by orbits at the critical
area close to the last KAM curve around the stable x1 orbit.
They can be on either the regular or the sticky side. In the latter
case, we also have the appearance of an embedded X feature.
In order to demonstrate the relation between the boxiness of

the orbits and their location close to the borderline between
order and chaos, we considered five more orbits in this zone at
various energies. These are the orbits presented in Figure 4.
All of them are sticky, located inside the dark area but close

to the borderline between white and dark (blue in the online
version) regions in Figure 1(b). They are indicated with solid
light gray (yellow in the online version) dots at the energies
E 0.206, 0.195, 0.18798, 0.17J = - - - - , and −0.162. Their
initial y0 values are, respectively, 1.17, 1.19, 1.23, 1.35, and
1.27 (always with p 0y0

= ). In Figure 4, we give them
successively from left to right with increasing energy. Below
each panel with the orbit in the (x,y) plane we give its
log10(GALI2) index. As GALI2 shows, all five orbits manifest
their chaotic nature at times larger than 1Gyr (indicated in the
lower panels with a vertical line). Orbits in Figure 4(a) to (d)
remain confined in the configuration space until the end of the
integration time, i.e., for 10Gyr. The orbit in Figure 4(e), at the
largest energy, is more chaotic. It reaches a smaller
log10(GALI2) value at time 10Gyr, while close to the end of
its integration time, it starts exploring larger regions in the
configuration space. However, it also has a boxy morphology
within time corresponding to about 1Gyr.
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The above results point out that in order to find orbits on the
equatorial plane that support boxy features in the bar of the model,
we have to consider initial conditions close to the borderline
between order and chaos in Figure 1. This happens not just
close to a specific resonance; we find such orbits at all energies
where there are x1 periodic orbits matching the size of the bar.
The regions where one should look for candidate orbits supporting
boxy features in the models are those that still appear white after
1Gyr of integration in Figure 1(a) and are found to be marginally
inside the chaotic region in Figure 1(b), i.e., have developed a
chaotic character in time t1 Gyr 10 Gyr< < .

4.1.2. Snapshot 3, t = 7.0 Gyr

We repeat the same analysis for the model of snapshot 3.
Figure 5, like Figure 1, gives the color-coded log10(GALI2)
quantity in a E y,J 0( ) diagram, however this time only for
t 102 = Gyr. Boxy orbits are again found at the borderline
between order and chaos. We present six of them in Figure 6.
Their locations in Figure 5 are at E y, 0.2, 1.03J 0 = -( ) ( ), (−0.19,
1.19), (−0.175, 1.3), (−0.156, 1.35), (−0.14, 1.4), and (−0.126,
1.57). The time evolution of the quantity log10(GALI2) below each
panel with the morphology of the orbit in Figure 6 implies that the
presented orbits are sticky. For t t 1 Gyr1< = , these orbits can

Figure 4. Five orbits with boxy character on the equatorial plane of the model of snapshot 2. Their location on the E y,J 0( ) diagram is denoted with solid light gray
(yellow in the online version) dots in Figure 1(b). They are (a) 0.206, 1.17-( ), (b) 0.195, 1.19-( ), (c) 0.18798, 1.23-( ), (d) 0.17, 1.35-( ), and (e) 0.162, 1.27-( ).
All of them are sticky to the stability islands of the stable representative of the main family of periodic orbits of the system. Below each panel of the first row is given
the corresponding GALI2 index up to 10Gyr. The vertical line indicates the location of the first Gyr.

Figure 5. Chaoticity of the planar orbits on the equatorial plane of snapshot 3. The lines and colors are the same as in Figure 1, which is the corresponding figure for
snapshot 2. Here we calculate log10(GALI2) for t 102 = Gyr. The six solid light gray (yellow in the online version) dots indicate the initial conditions of the boxy
orbits we present in Figure 6.
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Figure 6. Six orbits with boxy character on the equatorial plane of the model of snapshot 3. Their location on the E y,J 0( ) diagram is denoted with solid light gray
(yellow in the online version) dots in Figure 5. They are (a) (−0.2, 1.03), (b) (−0.19, 1.19), (c) (−0.175, 1.3), (d) (−0.156, 1.35), (e) (−0.14, 1.4), and (f) (−0.126,
1.57). For orbits in panels (b) and (c), we give their morphology in two different time windows (b1, b2 and c1, c2, respectively). All of them are sticky to the stability
islands of the stable representative of the main family of periodic orbits of the system. Below each labeled panel is the corresponding GALI2 index up to 10Gyr. The
vertical line indicates the location of the first Gyr.
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hardly be distinguished from regular orbits. We pay special
attention to the orbits of panels (b) and (c) that we present in two
different time windows; they are labeled b1, b2, and c1, c2,
respectively. In the first time window, which is larger than 1Gyr,
we plot the orbits for the time they retain their boxiness, while for
the second one, we plot the orbits as they appear after being
integrated for t 102 = Gyr. We observe that the orbit in b1 is boxy
and evidently harbors an X structure. However, within 10Gyr, it
shows a strongly chaotic character. Its morphology in the
configuration space is chaotic (panel (b2)) and GALI2, below it,
has a steep gradient downward, reaching values close to 10−14. We
encounter a similar evolution in the orbit described in panels (c1)
and (c2). In this case, the orbit remains confined in the
configuration space for more than 3Gyr and then expands into a
larger region of the configuration space, without, however, visiting
within 10Gyr all the allowed space.

We also note that the boxy orbits presented in Figure 6 have
a clear ymin∣ ∣ value along the x = 0 axis that gives them a bow-
like shape, something that has its counterpart in the shape of the
N-body bar in the MM models (cf. Figure 1, third panel from
left, in MM). This will be further discussed in Section 5.

4.1.3. Snapshot 4, t =11.2 Gyr

Finally, we repeat the same analysis for the last snapshot of
the MM paper. The color-coded E y,J 0( ) diagram for this case is
shown in Figure 7. This is a very slowly rotating model with
R=2.87 and corotation at 22.89kpc. As we can see, the loop
of the characteristic of the central family is huge. The
characteristic increases monotonically until point A and then
turns backward. The branch that goes back to the left reaches
the minimum EJ of the ZVC. Then, it turns back again toward
corotation, being essentially on the ZVC. The loop almost
closes as the two parts of the characteristic come very close at
about E 0.09J = - . Bar-supporting orbits on the equatorial
plane can be found only in the lowest branch of the
characteristic, while there is a large number of almost circular
and stable orbits (practically white regions for y 50 > in
Figure 7) that populate the extended disk region between the

end of the bar and corotation (cf. Figure 1, right panel, in MM).
Four typical orbits for this model are given in Figure 8. Their
locations in the E y,J 0( ) diagram are denoted with solid light
gray (yellow in the online version) dots and asterisks in
Figure 7. They are at (a) (−0.15, 1.27) and (b) (−0.12, 1.33)
(dots) and at (c) (−0.096, 8.292) and (d) (−0.088, 10.032)
(asterisks). The accumulation of a large number of almost
circular orbits for y0 initial conditions beyond those of the bar-
supporting orbits and the shape of the characteristic with the
almost closed loop favor the formation of rings surrounding the
bar by means of a dynamical mechanism similar to the one that
led to the formation of the ring in the model of Tsigaridi &
Patsis (2015).

4.2. Vertical Perturbations

Until now we have seen that a set of planar orbits with boxy
morphology can be found close to the borderline between order
and chaos above the characteristic of the central family of
periodic orbits, as this is determined by the GALI2 index in the
E y,J 0( ) diagrams. Now we will examine how the morphology
of these orbits changes if we perturb them vertically by adding
a p 0z0

¹ to their initial conditions. This means that the orbits
we present in this section have initial conditions y0 and
p 0z0

¹ , as well as z0 and p 0y0
= . Hereafter, when we give the

initial conditions of an orbit, we mean the nonzero ones, if not
otherwise indicated.
For 3D orbits, their regular or chaotic character cannot be

easily depicted on a single diagram, since we deal in general
with four initial conditions. Considering an orbit, the mono-
tonic variation of a single initial condition may lead to a
nonmonotonic succession of regular and sticky chaotic orbits.
It is not easy to know in a 4D space whether the deviation from
the initial condition of a torus will bring an orbit in a chaotic
sea or closer to an invariant torus around another stable
periodic orbit. However, we realized that for all planar boxy
orbits, when we started increasing their pz0

coordinate, we
could find a pzD range for which the 3D orbits retained their
boxy character. The variation of the GALI2 index with time

Figure 7. Chaoticity of the planar orbits on the equatorial plane of snapshot 4. The lines and colors are the same as in Figure 1. Here we calculate log10(GALI2) for
t 102 = Gyr. The two solid light gray (yellow in the online version) dots indicate the positions of orbits (a) and (b) in Figure 8, while the two asterisks indicate those of
orbits (c) and (d) in the same figure.
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was similar to that of the boxy 2D orbits. This led to the
conclusion that the building blocks not only for 2D but also for
3D boxy structures in real galaxies can be either regular orbits
on the most remote tori around stable periodic orbits or orbits
sticky to them. The latter orbits are, strictly speaking, chaotic,
but their sticky character keeps them confined in particular
regions of the phase space for sufficiently long times. This way,
they can support a given morphology.

Below, we give some typical examples of 3D boxy orbits or,
in other words, orbits with three boxy projections in the
configuration space. In Figure 9, we present six orbits from
the model of snapshot 2. The panels of each row refer to the
same orbit. A number that refers to each orbit and helps us in
the description is given on the right-hand side of each row. In
column (a), we give the face-on view, column (b) gives the
side-on view, column (c) gives the end-on view, and column
(d) gives the evolution of GALI2 in a log–log plot, as in the
previous figures.

In general, by starting from a planar orbit and adding pz, we
have the following possibilities: we will either reach a torus
around x1, a torus around a stable 3D family bifurcated from
x1, a chaotic zone between the two sets of tori, or we will enter
a chaotic zone (see Patsis & Katsanikas 2014a and P. A. Patsis
& M. Harsoula 2017, in preparation). The result depends both
on the energy of the orbit and on the pz initial condition. The
energy will determine the available resonant families of
periodic orbits existing (their number increases with EJ), while
pz will decide about the location of the orbit in the phase space.
In the present paper, we are just interested in pointing out that
there are vertical perturbations that support the 3D boxy
character. The planar orbits we start from have to be sought
along the lines we find for the 2D boxy orbits in the E y,J 0( )
diagrams. In Figure 9, the orbits in the four first rows are at the
same energy we have for the y p, y( ) surface of section in
Figure 2, i.e., for E 0.2J = - . Orbits 1 and 2 have y0=1.07,
which would be an initial condition on an invariant curve

around x1 in the y p, y( ) Poincaré surface of section (Figure 2) if
we had pz=0. However, orbit 1 is perturbed by pz=0.15,
and orbit 2 is perturbed by pz=0.2. In both cases, the orbits
form boxes in all three projections. The side-on and end-on
morphologies clearly support peanut-shaped structures. The
GALI2 evolution of orbit 1 (panel (d)) indicates that it is a
regular orbit, while that of orbit 2 points to a sticky one. The
next orbit, perturbed by pz=0.085, has y0=1.24; i.e., the
y p, y( ) Poincaré surface of section in Figure 2 corresponds to
the sticky orbit plotted with the solid gray/light blue
consequents. Again in this case, the 3D boxy character is
retained; however, this time the vertical perturbation is smaller.
For the same energy, we give an example of an orbit with
y0=1.19 and pz=0.165, which is orbit 4 in Figure 9. If
pz=0, the orbit would be sticky to an x1 orbit. Now it is sticky
again, but its morphology clearly resembles the morphology of
the x1v2 family, which is bifurcating, usually as unstable, at the
vertical 2:1 resonance (Skokos et al. 2002a). This can be seen
in panel (b) of row 4 in Figure 9. Strictly speaking, this side-on
profile is not boxy. Nevertheless, it has a shape similar to that
of the two main vertical bifurcations of x1. Considering several
orbits like this in different energies will lead to a boxy profile.
Orbits 5 and 6 are in nearby energies and have similar
morphologies and evolution of GALI2 as the previous ones.
Orbit 5 is at E 0.206J = - with y0=1.17 and pz=0.162,
while orbit 6 is at E 0.195J = - with y0=1.19 and pz=0.15.
An interesting result is that the sticky 3D boxy orbits in

many cases harbor an X feature in their face-on projections
(column (a)). This is conspicuous in orbits 3, 4, and 5, as well
as in regular orbit 1. This is in agreement with the result of
Patsis & Katsanikas (2014b), who suggested that sticky, boxy
orbits in the immediate neighborhood of the vertical 2:1
resonance have embedded X features in their face-on
projections. The property of stickiness was also the reason
for the appearance of an X inside the bars of the 2D barred-
spiral models in Tsigaridi & Patsis (2015). The same analysis

Figure 8. Four orbits on the equatorial plane of the model of snapshot 4. Their location on the E y,J 0( ) diagram is denoted with solid light gray (yellow in the online
version) dots and asterisks in Figure 7. They are (a) and (b) the orbits with the dots located at E y, 0.15, 1.27J 0 = -( ) ( ) and (−0.12, 1.33), respectively, and (c) and (d)
the orbits with the asterisks at (−0.096, 8.292) and (−0.088, 10.032) in Figure 7. Below each labeled panel is the corresponding GALI2 index up to 10Gyr. The
vertical line indicates the time corresponding to the first Gyr.
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led to similar results in the cases of the two other models
considered here as well. In Figure 10, we present some typical
orbits for the model of snapshot 3. Again here, double boxiness
with an X feature embedded in the boxy face-on projection is
found by perturbing boxy planar orbits in the z direction by pz.
This is given in orbit 1, which is at E 0.156J = - , y0=1.35,
and pz=0.09. In Figure 6(d), we have given the corresponding
orbit with pz=0. As orbits 2 and 3 show, the stable 3D

families (x1v1 and x1v1¢ in the notation of Skokos
et al. 2002a) bifurcated from x1 at the vertical 2:1 resonance
do exist in the model. In order to track them, we perturbed the z
coordinate in the vertical direction, while we put the initial
condition pz=0. The initial conditions of the two orbits are
E 0.156J = - , y0=0.7, and z=0.63 (orbit 2) and
E 0.156J = - , y0=0.7, and z 0.63= - (orbit 3). Their
morphology indicates that they belong to invariant tori in the

Figure 9. 3D orbits associated with 3D boxy structures in the model of snapshot 2. Orbit 4 has a side-on profile similar to x1v2 orbits, while all the rest have three
boxy projections. Orbits 1, 3, 4, and 5 harbor an X feature in their face-on projections. The GALI2 evolution indicates the sticky character of orbits 2 to 6, while orbit 1
is regular. The units on the axes of the first three columns are in kpc.
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immediate neighborhood of x1v1 (Patsis & Katsanikas 2014b).
This is consistent with the evolution of their GALI2 index in
panel (d). By means of such orbits, we can construct a sharp
X-shaped side-on profile with, however, an elliptical face-on
morphology. A nice example is given by orbit 4, with nonzero
initial conditions E 0.156J = - , y0=0.7, and pz=0.303. This
is a sticky orbit (see panel (d)). As long as it has a regular
character, the orbit supports an elliptical face-on morphology.
However, when it starts diffusing in the configuration space, it
tends to obtain a boxy structure (panel (a)).

Finally, in Figure 11, we give an example of an orbit from
the model of snapshot 4 that reproduces the main morphology
we want to underline that exists in our models. Namely, it is a
sticky orbit with all its projections boxy, while in its face-on
projection, it has a discernible X feature. The initial conditions
of the orbit are E 0.15J = - , y0=1.27, and pz=0.07.
The process for finding 3D double boxy orbits by perturbing

2D boxy ones can be applied at all energies, for which we
could find x1 orbits supporting the size of the N-body bar in the
models. However, as EJ increases and we approach corotation,

Figure 10. Orbits in the model of snapshot 3. Orbit 1 is a sticky orbit with a boxy 3D structure and an X feature embedded in the face-on projection, orbits 2 and 3 are
frown and smile regular 3D orbits on x1v1 tori, and orbit 4 is a sticky orbit that changes its face-on elliptical morphology, becoming boxy as soon as it abandons its
regular behavior. The units on the axes of the first three columns are in kpc.

Figure 11. A 3D boxy orbit in the model of snapshot 4. It is sticky (panel (d)) and reproduces the X feature in its face-on projection (panel (a)). The units on the axes
of the first three panels are in kpc.
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the structure of phase space becomes more complicated, due to
the presence of more families of periodic orbits introduced
in the system at successive resonances (Skokos et al. 2002a).
The monotonic variation of an initial condition (e.g., pz) may
lead either to quasi-periodic orbits around stable periodic orbits
and the chaotic orbits sticky to them or to direct diffusion in the
chaotic sea. This happens, in general, in a nonmonotonic way.
As an example, in Figure 12, we give the orbit of the model of
snapshot 3 with E y, 0.14, 1.4J 0 = -( ) ( ), given in Figure 6(e),
perturbed by p 0.038, 0.039z = and 0.040. We observe that,
for pz=0.038, the orbit clearly diffuses in the configuration
space; for pz=0.039, it has a double boxy character for more
than 3Gyr before starting to diffuse in the chaotic sea (the
quantity log10(GALI2) 10-⪅ at t=10Gyr); and, for
pz=0.040, we again have a practically chaotic orbit.

In order to demonstrate the fact that at energies where
several families of 3D periodic orbits coexist, different
perturbations of the planar orbits may lead us to different boxy
configurations, we present in Figure 13 the planar orbit of the
model of snapshot 2 given in Figure 4(e). It has E y,J 0 =( )

0.162, 1.27-( ). In panel (a), pz=0.016. The orbit, being
initially boxy on the equatorial plane, has a narrow side-on
profile. This morphology lasts for more than 3Gyr. Then, the
orbit occupies a larger volume in phase space. However, it
retains a less confined but boxy character in its face-on view,
while in the side-on view, its morphology resembles that

encountered in orbits close to the stable “frown” and “smiles”
periodic orbits. For pz=0.032 (Figure 13(b)), the orbit
remains boxy in its face-on view for an even longer time than
that for pz=0.016, but then it diffuses in phase space and does
not have any particular morphology in either projection. The
side-on views of the orbits in both cases of Figure 13 clearly
indicate that they have been trapped close to an x1v3 periodic
orbit, which is bifurcated at the 3:1 vertical resonance (Patsis
et al. 2002). It is worth underlining that the side-on profiles of
the double boxy orbits in which a morphology of a higher-order
n: 1 resonance may be identified are, in general, narrower as we
approach corotation, in agreement with the profile of the
corresponding periodic orbits found in Patsis et al. (2002).
Before closing, we want to add a comment on the general

morphology of the three models from the MM simulation,
especially the one that appears in snapshots 3 and 4 (cf. Figure
1 in MM). This morphology is that of a bar surrounded by a
ring, with the areas on the sides of the bar being rather depleted
from particles. Beyond this central structure, there is a disk
without any special feature. The bar and ring morphology could
easily correspond to that of a bar with an inner ring (Buta &
Combes 1996). However, in this particular case, corotation is
far away, so the question that arises is: what is the orbital
content behind this structure in the model? The orbits that we
have presented so far support a bar of the size of the bars in the
MM N-body snapshots. The folding of the characteristic

Figure 12. Planar orbit presented in Figure 6(e) perturbed by pz=0.038 (a), 0.039 (b), and 0.040 (c). In panels (a) and (c), the orbits diffuse in configuration space,
while in panel (b), the orbit has a double boxy character for more than 3 Gyr.
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provides appropriate round orbits with the right dimensions to
support the ring.

Focusing on the model of snapshot 4, we can see that the
sticky bar-supporting orbits have face-on projections that
reinforce a bar structure with two minima along the minor
axis, giving it a bow-like or peanut-like form, but on the
equatorial plane of the model in this case (Figure 11(a)). The
planar, sticky, boxy orbits have a similar shape (Figure 8(a)).
The corresponding MM model has this morphological feature
as well. At larger energies, one can find in the plane some
tumbling bar-supporting orbits (see Figure 8(b)). However,
even when considering these orbits to be among those that
populate the model, the areas on the sides of the bar remain
rather empty. Finally, not only the presence of the circular
orbits with the right dimensions, but also the regression of the
characteristic and the following continuation of the curve
forward, i.e., toward corotation, favor the accumulation of
round orbits around the bar. This folding of the characteristic
brings into the system twice as many stable circular periodic
orbits as in the rest of the energies, and this supports the
formation of a circular ring at a certain distance. All of these are
summarized in Figure 14, where we combine the orbits of
Figure 8 in order to reproduce the main morphology of the
N-body MM model. We also plot two circular periodic orbits as
a reference to the dimensions of the ring. The initial conditions
for the two periodic orbits are E 0.0961538J = - , y0=
8.49173 and E 0.0898683J = - , y0=10.0141, respectively.
Figure 14 is by no means the result of a self-consistent
Schwarzschild-type model. It just shows that in the snapshot 4
model, there are orbits that can reproduce the morphology of
the corresponding MM N-body model.

4.3. Fast-rotating Bars

In the present paper, we study orbital boxiness in the MM
models, all of which have slow-rotating bars. We have found
that boxiness is a property associated with the presence of x1

orbits supporting the bar. This is not related to the pattern speed
of the model per se. However, in slow-rotating models like
those of the MM simulations, there are a lot of non-bar-
supporting orbits between the end of the bar and corotation.
These are the circular orbits. Contrarily, in fast-rotating bars,
one can find bar-supporting elliptical x1 orbits almost all the
way from the center of the system to corotation.

Figure 13. Planar orbit presented in Figure 4(e), E y, 0.162, 1.27J 0 = -( ) ( ), perturbed by pz=0.016 (a) and pz=0.032 (b). The orbit initially has a x1v3 side-on
profile, while for longer times, its morphology is different in each case.

Figure 14. The set of four nonperiodic orbits of the model for snapshot 4 that
are depicted in Figure 8 reproduce the basic morphological features of the
corresponding MM model. Two circular periodic orbits at close-by energies are
also plotted. A ringed bar morphology is formed, but away from corotation,
which in this case is at 22.89kpc. The red ellipse indicates the bar in the MM
snapshot.
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In order to examine the dependence of the results on the
pattern speed, a systematic study with models of bars rotating
in a range of bW is needed. This is not done in the present paper.
Nevertheless, we considered the potential of one of the models
(model of snapshot 3) with a higher pattern speed, so that we
obtained a ratio R 1.1bCR a = . This model is not the result of
an N-body simulation. It has been used just for studying the
orbital behavior of bar-supporting orbits close to corotation.

We found again in this case that the 2D orbits at the borders
of the stability islands of x1 were boxy, and we could find 3D
boxy orbits by perturbing them in the vertical directions within
a certain pzD range. So the rule, in principle, also applies in the
case of bar-supporting orbits close to corotation. However, we
have to note that the planar, boxy bar-supporting orbits we
could find close to corotation on the plane were like orbit 1 in
Figure 3 and not like orbit 3 of the same figure. In other words,
at their apocentra, the segments that were parallel to the minor
axis of the bar were relatively small. On the y p, y( ) Poincaré
sections, we found more islands of orbits of higher multiplicity
than in Figure 2. Many of them surround the stability islands of
x1, and this affects the shape of the sticky orbits in the region.
Also, the pzD range for which we could find double boxy orbits
was much smaller. The 3D double boxy bar-supporting orbits
remained confined close to the equatorial plane. We could find
orbits with boxy edge-on profiles away from the equatorial
plane, but their face-on projections did not support the bar.

In conclusion, the mechanism applies independently of the
pattern speed value. However, it applies more efficiently away
from corotation. If a bar stops away from corotation (as in the
slow-rotating models), then almost all of it can be considered a
double boxy structure. In fast-rotating models, the 3D double
boxy part can be found pronounced in the inner parts of the bar.

5. Discussion and Conclusions

The orbital analysis we present in this paper suggests a recipe
for building 2D and 3D boxy structures in rotating bars. The
basic idea is as follows. Let us start with the planar backbone of
periodic orbits for building a bar, namely with the well-known
x1 family. However, instead of populating the model with
regular quasi-periodic orbits encountered in the immediate
neighborhood of the periodic orbit, we consider either periodic
orbits close to the last KAM or, more efficiently, the sticky orbits
that surround the islands of stability, as they appear in the
surfaces of the section. The selection of these orbits secures a
boxy morphology on the plane.

In a 3D model, when we eject particles that follow the 2D
boxy orbits out of the plane by adding a p 0z ¹ perturbation,
we find that there is always a pzD range of perturbations for
which all three projections of the 3D orbits are boxy. A
remarkable property of these sticky boxy orbits is the formation
of an X feature embedded in the bar in the face-on projections.

In several cases, the side-on views had a peanut-shaped
morphology. However, it is beyond the scope of the present
paper to attribute specific orbits or sets of orbits to the observed
peanut shapes encountered in edge-on galaxies or snapshots of
N-body models. This was investigated thoroughly in Patsis &
Katsanikas (2014b). In this study, we emphasize that as long as
we have the usual ellipses of the x1 family (or the x1-tree in 3D
models according to Skokos et al. 2002a) in a rotating bar, we
can find a class of boxy 2D and 3D orbits. They are sticky
chaotic orbits, as their GALI2 index indicates, and they can
support the bar or a part of the bar for many Gyr.

Observational features that can be reproduced by using such
orbits as building blocks can first be the boxy- or peanut-shaped
bulges in the central parts of the bars. In these cases, in the face-
on views of the galaxies, we will observe boxy isophotes in their
central parts, inside the bar, as in the sample of galaxies presented
by Erwin & Debattista (2013). Furthermore, the present study
indicates that in cases of slow-rotating bars, as in the MM
models, the 3D boxy structure may constitute a major part of the
bar. The presence of the X feature in the face-on views of the
orbits, as well as the presence of a ring surrounding the bar, raises
the question of whether a dynamical mechanism such as the one
proposed by Tsigaridi & Patsis (2015) acts in galaxies like
IC5240, presented in Buta et al. (2007).
In closing, we enumerate our conclusions.

1. In models where the family of x1 ellipses exists in the
MM models, we can find a class of sticky chaotic orbits
with a 2D and/or 3D boxy structure. The shapes of these
orbits, after integrating them for 10Gyr and the evolution
of their GALI2 index, show that they can be used as
building blocks for structures that last for several Gyr.
They exist in a large range of EJ values.

2. 2D nonperiodic boxy orbits can be found on the
outermost invariant curves around x1 on a surface of
section or in regions in the immediate neighborhood of
the stability islands. We find them for all EJ values, for
which we encounter x1 periodic orbits that do not exceed
the size of the N-body bar.

3. For finding 3D orbits with boxy morphology in both
face-on and edge-on views, one has to perturb the boxy
planar orbits in the vertical direction. There is always a

pzD interval in the initial conditions of the perturbed,
initially planar orbits in which the 3D orbits will have a
boxy structure. These are 3D sticky chaotic orbits. Their
face-on projections are different from those of the quasi-
periodic orbits close to x1 and its 3D bifurcations at all EJ

values we find them.
4. In the face-on projections of these sticky boxy orbits, we

find the formation of an X embedded in the boxy
structure.

5. Such orbits can be used to construct models with boxy
isophotes inside the face-on views of the bars. The areas
of the boxy isophotes in these cases correspond to the
extent of the edge-on boxy bulges, in agreement with the
results of Patsis & Katsanikas (2014b).

6. According to our analysis, the degree of boxiness of a
bar, or of a part of it, indicates which orbits are populated.
If quasi-periodic orbits in the immediate neighborhood
of the periodic orbits of the central family prevail, the
face-on projections will be elliptical. In contrast, if the
majority of the nonperiodic orbits building the bar or its
part are at the edges of the stability islands and/or sticky
chaotic orbits next to them, then the supported shape in
the face-on views will be boxy. In both cases, we can
have boxy edge-on profiles.

7. In the case of slow rotation, our 3D sticky, boxy orbits
can build boxy bars (not just boxy features embedded in
the bars). In such cases, almost the whole bar is boxy.
The slow rotation of the models favors the appearance of
a ringed bar morphology, despite the fact that corotation
is at large distances.

We note that, in a fast-rotating case we examined, we
found that boxy bar-supporting planar orbits close to
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corotation had small segments parallel to the minor axis of
the bar at their apocentra. By perturbing them in the vertical
direction, we could find boxy orbits supporting the bar
confined close to the equatorial plane. In such a case, double
boxy structures are found mainly embedded in the bar.
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